Advanced Computer Graphics Mesh Processing

G. Zachmann
University of Bremen, Germany cgvr.cs.uni-bremen.de

Bememe
 Vertex Normals

- Polygonal surfaces are (usually) just a linear approximation of smooth surfaces
- Wanted: good vertex normals

- "Good" = as close as possible to true normals
- Ansatz: compute vertex normal n_{0} at vertex V_{0} as

$$
\mathbf{n}_{0}=\sum_{i=1}^{k} w_{i} \mathbf{n}_{i}
$$

where $\mathbf{n}_{i}=$ normal of face given by $\mathrm{V}_{0} \mathrm{~V}_{i} \mathrm{~V}_{i+1}$, $w_{i}=$ some weight

- Question: which weights give best normals?

Weights That Have Been Proposed in the Literature

- No weights, i.e. $w_{i}=1$
- $w_{i}=A_{i}$ (area), $w_{i}=\alpha_{i}$,
$w_{i}=\frac{1}{r_{i} r_{i+1}}$ with $r_{i}:=\left\|V_{i}-V_{0}\right\|$
- Best (so far) [Nelson Max]:

$$
w_{i}=\frac{\sin \left(\alpha_{i}\right)}{r_{i} r_{i+1}}
$$

- Gives provably correct normals for polyhedra inscribed in sphere (= degree 2 surface)
- Smallest RMSE almost everywhere for polygonal approximations of polynomial surface of degree 3

Weights

- Practical computation:
- Remember: $\left(V_{i}-V_{0}\right) \times\left(V_{i+1}-V_{0}\right)=\sin \left(\alpha_{i}\right) r_{i} r_{i+1} \mathbf{n}_{i}$
- In practice, this allows for easier computation of the vertex normal:

$$
\mathbf{n}_{0}=\sum_{i=1}^{k} \frac{\left(V_{i}-V_{0}\right) \times\left(V_{i+1}-V_{0}\right)}{\left(V_{i}-V_{0}\right)^{2}\left(V_{i+1}-V_{0}\right)^{2}}
$$

- Geometric intuition why longer faces should have smaller weights:

Consistent Normal Orientation for Meshes

- Problem:
- Many models consist of many unconnected patches (in particular those created with modelling tools)
- Patches do not necessarily have consistent orientation
- Bad consequences:

- Two-sided lighting is necessary (slightly slower than onesided lighting)
- BSP representation of polyhedra is difficult to construct with inconsistent normals
- And many more ...

- Idea for a solution: boundary coherence = patches with common boundaries should be oriented consistently

or

- This is fairly straight-forward to implement, provided we have complete neighborhood information (topology)
- And assuming the mesh is closed

1. Detect edges incident to only 1 polygon (boundary edges), or incident to more than 2 polygons (nonmanifold edges)
2.Partition mesh into 2-manifold patches
2. Orient normals consistently within each patch (propagate consistent normal direction from one polygon to the next throughout a patch using BFS)
4.Determine patch-patch boundaries close to each other (which are "meant" to be connected)
3. Propagate normal orientations across those boundaries, too

－ （U）Results

\longrightarrow

(i) Mesh Smoothing

- Frequent problem: meshes are noisy (e.g., from marching cubes, or point cloud reconstruction)

Typical output of marching cubes

Output from laser scanner after meshing

Desired, smoothed mesh

- Idea: "convolve" mesh with a filter (kernel), like Gaussian filter for images

Digression/Recap: Image Smoothing (Blurring)

- Simple, linear filtering by convolution:
- $I=I(x, y)=$ input image, $J=J(x, y)=$ output image

$$
J(x, y)=\sum_{\substack{i=-k, \ldots,+k \\ j=-k, \ldots,+k}} I(x+i, y+j) H(i, j)
$$

- H is called a kernel, $k=$ kernel width
- Sequential algorithm to construct $/$:
- Slide a $k \times k$ window across I
- At every pixel of I, compute weighted average of I inside window, weighted by H

Examples

- Gaussian kernel

$$
\begin{gathered}
\\
\\
\\
k=3=3 \\
16 \\
\frac{1}{16} \begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}
\end{gathered}
$$

- Box filter (= simple averaging):

$$
H=\frac{1}{9} \begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}
$$

（U）Digression：Edge Extraction

|

都

\square

$$
\square
$$

Vertical Sobel Operator

－
都

```
1 0－1
\(20-2\)
\(10-1\)
    0-1
    0-1
\[
: 0-2
\] \(10-1\)
\[
-1
\]
``` －
［

\(\stackrel{\sim}{\sim}\)
 （

都

Horizontal edges（absolute value）

Horizontal
Sobel
Operator
Horizontal
Sobel
Operator

路 －

\begin{abstract}
\(\square\)
\end{abstract}

\begin{abstract}

\end{abstract}

\[
0
\]
|

－

- Problem: we can't simply apply the convolution idea to meshes!
- Why not?
- Meshes don't have a canonical , tensor-structure-like parameterization!
- I.e., usually there is no parameterization like \(x\) and \(y\) in the plane
- Goal: filter without parameterization

\section*{(U) Laplacian Smoothing}
- Idea:
- Consider edges as springs
- For a vertex \(\mathbf{v}_{0}\), determine its position of least energy within its 1 -ring
- Energy of \(\mathbf{v}_{0}: \quad E=\frac{1}{2} \sum_{i=1}^{d}\left\|\mathbf{v}_{i}-\mathbf{v}_{0}\right\|^{2}\)
- Necessary condition for minimum: derivative equals zero
\[
\frac{\mathrm{d} E}{\mathrm{~d} \mathbf{v}_{0}}=\sum_{i=1}^{d}\left(\mathbf{v}_{i}-\mathbf{v}_{0}\right)=0
\]
- Iterative procedure: \(\mathbf{v}_{0}^{\prime}=\frac{1}{d} \sum_{i=1}^{d} \mathbf{v}_{i}\)

Sometimes a.k.a "umbrella operator"

- Generalization: introduce "influence" of adjacent vertices and "speed"
\[
\begin{aligned}
& \Delta \mathbf{v}_{0}=\sum_{i=1}^{k} w_{i}\left(\mathbf{v}_{i}-\mathbf{v}_{0}\right), \quad \text { with } \sum w_{i}=1, w_{i} \geq 0 \\
& \mathbf{v}_{0}^{\prime}=\mathbf{v}_{0}+\lambda \Delta \mathbf{v}_{0}
\end{aligned}
\]
- Simplest form of the weights:
\[
\Delta \mathbf{v}_{0}=\frac{1}{d} \sum_{i=1}^{d}\left(\mathbf{v}_{i}-\mathbf{v}_{0}\right)
\]
where \(d=\) degree of \(\mathbf{v}_{0}=\) number of neighbors
- Better weights are \(w_{i}=\frac{1}{\left\|\mathbf{v}_{i}-\mathbf{v}_{0}\right\|}\) or \(w_{i}=e^{-\left\|\mathbf{v}_{i}-\mathbf{v}_{0}\right\|^{2}}\) ("better" by experiment) (see chapter "Object Representations" for more)

Original
\[
\begin{aligned}
& \text { After } 4 \\
& \text { iterations }
\end{aligned}
\]

\section*{(4) Problem: Laplace-Smoothing Causes Shrinking}

\section*{.}

\section*{Bremen
جill \\ A Simple Extension to Prevent Shrinking}
- Like before, for every \(\mathbf{v}_{i}\) compute
\[
\Delta \mathbf{v}_{i}=\frac{1}{d} \sum_{j \in \mathcal{N}(i)}\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)
\]

- Average all neighboring \(\Delta\) 's (including the own \(\Delta\)):
\[
\mathbf{d}_{i}=\frac{1}{d+1} \sum_{j \in \mathcal{N}(i) \cup i} \Delta \mathbf{v}_{j}
\]
- Push the new vertex towards the 1 -ring equilibrium and outwards away from the local direction of contraction (\(\mathbf{d}_{\mathbf{i}}\)):
\[
\mathbf{v}_{i}^{\prime}=\mathbf{v}_{i}+\lambda\left(\alpha \Delta \mathbf{v}_{i}-(1-\alpha) \mathbf{d}_{i}\right)
\]
(巴) Comparison
G. Zachmann The
 SS June 2024

U Comparison
(
SS June \(2024 \quad\) Mesh Processing

\section*{emin \\ Global Laplacian Smoothing}
- Given: mesh \(M=(V, E, F), V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \mathbf{v}_{i}=\left(x_{i}, y_{i}, z_{i}\right)\)
- Sought: mesh \(M^{\prime}\) with vertices \(\mathbf{v}^{\prime}\) ' such that
- \(M^{\prime}\) is smoother than \(M\), and
- \(M^{\prime}\) approximates \(M\)
- If \(M^{\prime}\) was perfectly smooth (i.e., a plane), we could find weights s.t.
\[
\begin{equation*}
\forall i: \sum_{j \in \mathcal{N}\left(\mathbf{v}_{i}^{\prime}\right)} w_{i j}\left(\mathbf{v}_{j}^{\prime}-\mathbf{v}_{i}^{\prime}\right)=0 \tag{1}
\end{equation*}
\]
- This can be written as 3 systems of linear equations, one for \(x\) coords, one for \(y\) coords, one for \(z\)
- In the following, we will deal with the \(x\) coords \(-y\) and \(z\) work similarly
- Consider the \(x\) coords; write (1) as \(\mathbf{L}\left(\begin{array}{c}x_{1}^{\prime} \\ x_{2} \\ \vdots \\ x_{n}^{\prime}\end{array}\right)=0\)
where \(\mathbf{L}\) is a \(n \times n\) matrix, with \(L_{i j}= \begin{cases}-1 & , i=j \\ w_{i j} & ,(i, j) \in E \\ 0 & , \text { else }\end{cases}\)
- Definition: \(L\) is called the Laplacian of the mesh
- In a sense, L encodes the adjacency of the mesh
- Analogously, construct a system of equations of \(y\) and \(z\)
- Example: for sake of simplicity, use \(w_{i j}=\frac{1}{d_{i}}\)
\[
L=\left(\begin{array}{cccccc}
-1 & 1 / 3 & 0 & 1 / 3 & 1 / 3 & 0 \\
1 / 4 & -1 & 1 / 4 & 1 / 4 & 0 & 1 / 4 \\
0 & 1 / 2 & -1 & 0 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 0 & -1 & 1 / 4 & 1 / 4 \\
1 / 3 & 0 & 0 & 1 / 3 & -1 & 1 / 3 \\
0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & -1
\end{array}\right)
\]

- Warning: L has rank \(n-1, n=\) \# vertices
- "Proof" by example: vector \(\mathbf{x}=(1, \ldots, 1)^{\top}\) is a solution to \(L \mathbf{x}=0\) (and for all \(\alpha, \mathbf{L}(\alpha \mathbf{x})=0\), too)
- Check for yourself: ist that so?
- Solution: "anchor" one vertex, i.e., fix its position
- For instance, in our example, add condition \(\mathbf{v}_{1}^{\prime}=\mathbf{v}_{1}\) :
\[
\left(\begin{array}{cccccc}
-1 & 1 / 3 & 0 & 1 / 3 & 1 / 3 & 0 \\
1 / 4 & -1 & 1 / 4 & 1 / 4 & 0 & 1 / 4 \\
0 & 1 / 2 & -1 & 0 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 0 & -1 & 1 / 4 & 1 / 4 \\
1 / 3 & 0 & 0 & 1 / 3 & -1 & 1 / 3 \\
0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & -1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
\vdots \\
\vdots \\
X_{n}^{\prime} \\
\vdots \\
X_{1}
\end{array}\right)
\]

- This system now has a unique solution
- Avoiding shrinking: introduce another constraint requiring the barycenters of the new triangles be the same as the barycenters of the old ones
\[
\begin{equation*}
\forall(i, j, k) \in F: \frac{1}{3}\left(\mathbf{v}_{i}^{\prime}+\mathbf{v}_{j}^{\prime}+\mathbf{v}_{k}^{\prime}\right)=\frac{1}{3}\left(\mathbf{v}_{i}+\mathbf{v}_{j}+\mathbf{v}_{k}\right) \tag{2}
\end{equation*}
\]
- Write (1) and (2) as
\[
\binom{\mathbf{L}}{\mathbf{B}}\left(\begin{array}{c}
x_{1}^{\prime} \tag{3}\\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\binom{0}{\mathbf{b}}
\]
where \(\mathbf{B}\) is a \(m \times n\) matrix, \(m=\) number of triangles, and \(\mathbf{b}\) is a column vector with \(m\) entries, where the \(k\)-th row corresponds to triangle \(F_{k}=\left(i_{1}, i_{2}, i_{3}\right)\) and \(B_{k i}=\frac{1}{3}\), for \(i=i_{1}, i_{2}, i_{3}, 0\) elsewhere, and \(b_{k}=\frac{1}{3}\left(x_{i 1}+x_{i 2}+x_{i 3}\right)\)
- Solve (over-determined) system (3), which has the form \(\mathbf{A x}=\mathbf{c}\) in the least squares sense:
\[
\mathbf{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{c}
\]
- In real life, use a sparse solver, e.g., TAUCS or OpenNL
- Results:

- Further requirement: certain points ("features") should be maintained
- Solution: introduce more constraints
- Pick feature points \(\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{k}}\)

- Either by user, or by automatic salient point detectors
- Add constraint \(\mathbf{v}_{i_{l}}^{\prime}=\mathbf{v}_{i_{i}}, \boldsymbol{l}=1, \ldots, k\)
- Add equations (4) to system (3):
\[
\left(\begin{array}{c}
\mathbf{L} \tag{4}\\
\mathbf{B} \\
\mathbf{C}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\mathbf{b} \\
\mathbf{c}
\end{array}\right)
\]
where \(\mathbf{C}\) is a matrix containing in every row \(l\) just one 1 at position \(i_{l}, 1 \leq l \leq k\), and \(\mathbf{c}=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)\)
- Again, we do this for \(x-, y\)-, and \(z\)-coordinates separately \\ \section*{Res）Results \\ \section*{Res）Results Noisy original Baplacian smoothing Bateral smoothing Noisy original Baplacian smoothing Bateral smoothing Noisy origina Smoothed
G．Zachmann
Noisy original
Laplacian smoothing Gilateral smoothing Noisy origina Smoothed
G．Zachmann
Noisy original
Laplacian smoothing Gilateral smoothing G．Zachmann \(\quad\) Laplacian smoothing Bilateral smoothing Global G．Zachmann \(\quad\) Laplacian smoothing Bilateral smoothing Global \\ \\ UJI Results \\ \\ UJI Results \\ \\ Smoothed \\ \\ Smoothed Noisy Originals，Bilateral smoothing Noisy Originals，Bilateral smoothing \\ \\ Results \\ \\ Results Noisy originalus Noisy originalus Noisy original Smoch Noisy original Smoch \\ \\ Bilateral smoothing \(\quad\) Global \\ \\ Bilateral smoothing \(\quad\) Global （2） （2） Bremen Bremen Bremen \\ \\ Results \\ \\ Results \\ \\ （U）Results \\ \\ （U）Results \\ \\ Noisy original} \\ \\ Noisy original}
Global smoothing
nrixe \(\longrightarrow\)
－

Processing

g

－

\section*{Bremen
\(\underset{\sim 1}{2 l|l|}\) \\ Mesh Simplification}
- Simplification: Generate a coarse mesh from a fine (hi-res) mesh
- While maintaining certain criteria (will not be discussed further here)
- Elementary operations:
- Edge collapse:

- All edges adjacent to the edge are required

(More details in the course "Virtual Reality ..")
- Vertex removal:

- All edges incident to the vertex are needed

\section*{Subdivision Surfaces: One of the First Movies}
[Pixar: "Geri's Game"]

(ت) Examples from Animation Films

Input base mesh
Subdivision patch structure
Final model

\section*{Example from Games}
- Used to create high-poly models that are then used to bake texture maps (normal map, specular map, etc.) for the low-poly in-game models

\section*{Basic Idea of Subdivision}
- Start with a (simple) mesh \(M^{0}\), called control mesh
- In each iteration \(i\) :
1. Refinement: subdivide edges and faces of \(M^{i}\)
- Some schemes split vertices ("dual" subdivision schemes)
2. Weighted averaging: calculate new positions by averaging neighboring vertices
- Results in a new mesh \(M^{i+1}\) (generation i+1)
- Ideally, the mesh converges to a limit surface
\(M^{1}\)
\(M^{2}\)

\(M^{\infty}\)

\section*{The Catmull-Clark Subdivision Scheme}
- Let \(p_{i}=\) vertices of the "old" mesh generation
- For each face, calculate a new "face point"
\[
f=\frac{1}{k} \sum_{i=1}^{k} p_{i}
\]
- For each edge, calculate a new
\[
\begin{aligned}
& \text { "edge point": } \\
& \qquad e=\frac{1}{4}\left(p_{1}+p_{2}+f_{1}+f_{2}\right)
\end{aligned}
\]
- For each old vertex, \(p\), calculate a new "vertex point":
\[
p^{\prime}=\frac{1}{m} q+\frac{2}{m} r+\frac{m-3}{m} p
\]

\(k=\) \# old vertices incident to the face (valence)
\(p_{1}, p_{2}=\) old vertices incident to the edge
\(f_{1}, f_{2}=\) new face point of the faces incident to the edge
\(m=\) \# faces/edges incident to old vertex (valence)
\(q=\) average of incident face points
\(r=\) average of incident edge points
\[
q=\frac{1}{m} \sum_{i=1}^{m} f_{i} \quad r=\frac{1}{m} \sum_{i=1}^{m} e_{i}
\]

\section*{巴 Catmull-Clark in Action}

\section*{(4) Advantages}
- Modelers and animators (artists) like object descriptions that are ...
- Easy to understand and control
- Smooth, but creases can be added easily when needed
- Offer different levels of detail, and LoD's can be made adaptive, e.g., view-dependent
- Well-suited for animation, i.e., easy to deform
- Allow for arbitrary topology (with holes and borders)
- Compact (in terms of memory usage)

\section*{Subdivision Schemes ("Subdivision Zoo")}

Common schemes:
- Catmul Clark
- Doo-Sabin
- Loop
- Butterfly - Nira Dyn
- ...many more

Classification by:
- Mesh type: tris, quads, hex..., combination
- Face / vertex split (a.k.a. "primal" / "dual" scheme)
- Interpolating / Approximating
- Smoothness
- Linear/non-linear
- ...
(4) Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
```

