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Y Vertex Normals

* Polygonal surfaces are (usually) just a linear -

approximation of smooth surfaces ~
Face normals

Interpolated

* Wanted: good vertex normals normals

\/
* "Good" = as close as possible to true normals ﬁk‘//\
* Ansatz: compute vertex normal ng at vertex Vy as Vlrtex normals
/ ™~
k
Ng = Z TALF
=1

where n; = normal of face given by VoVVi,1,
w; = some weight

* Question: which weights give best normals?

e}
o _J'
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Weights That Have Been Proposed in the Literature

Vi+1

 No weights, i.e. w; =1

o w;=A;(area), w; = ¢;,

= with s = 1w s [
v <
* Best (so far) [Nelson Max]: AN
\ Vi1
sin( o -
sin(a)
Fir;
A One (no weights) 7.3 -3.7
* Gives provably correct normals for polyhedra Ai 6.5-2.8
inscribed in sphere (= degree 2 surface) (Ui 10.7-3.4
7.3-5.1
Fifi+1
e Smallest RMSE almost everywhere for polygonal Best | s.rnr(a,-) ) 30-15
iri+1

approximations of polynomial surface of degree 3
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* Practical computation:
e Remember: (Vi — Vo) X (Vi+1 — Vo) — Sin(C‘fi)rirH—lni

* In practice, this allows for easier computation of the vertex normal:

‘ Vi— VW) x (Viqi — W
o= 3 (Vi Vo) x )

(Vi — Wo)? (Vigr — W)?

=1

e Geometric intuition why longer taces should have smaller weights:
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Y Consistent Normal Orientation for Meshes B

* Problem:

 Many models consist of many unconnected patches (in
particular those created with modelling tools)

* Patches do not necessarily have consistent orientation
* Bad consequences:

* Two-sided lighting is necessary (slightly slower than one-
sided lighting)

* BSP representation of polyhedra
Is difficult to construct with
inconsistent normals

* And Mmany more ... double-sided |- l single-sided lighting
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* Ildea for a solution: boundary coherence
= patches with common boundaries
should be oriented consistently

* This is fairly straight-forward to
implement, provided we have complete
neighborhood information (topology)

* And assuming the mesh is closed
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@J) General Procedure

1. Detect edges incident to only 1 polygon (boundary
edges), or incident to more than 2 polygons (non-
manifold edges)

2.Partition mesh into 2-manifold patches

3.0rient normals consistently within each patch
(propagate consistent normal direction from one
polygon to the next throughout a patch using BFS)

4.Determine patch-patch boundaries close to each
other (which are "meant" to be connected)

5.Propagate normal orientations across those
boundaries, too
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Y Results
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Y Mesh Smoothing

* Frequent problem: meshes are noisy (e.g., from marching cubes, or point
cloud reconstruction)

Typical output of Output from laser Desired,
marching cubes scanner after meshing smoothed mesh

* Idea: "convolve" mesh with a filter (kernel), like Gaussian filter for images
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Y Digression/Recap: Image Smoothing (Blurring)
* Simple, linear filtering by convolution:
 [=1(x,y) =inputimage, J=J(x,y)=outputimage

Jxy)= > Ix+iy+j)H(ij)

 His called a kernel, k = kernel width
* Sequential algorithm to construct J:

e Slide a kxk window across I

* At every pixel of I, compute weighted average of I inside window, weighted by H
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@ Examples

e Gaussian kernel

k=3

1 1 2 1
H_1_6242
1 2 1

* Box filter (= simple averaging):

Ol =
[ O —
—t b ek
—t —t

11
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Y Digression: Edge Extraction

G. Zachmann
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Vertical edges (absolute value)

Mesh Processing

W

HEEEEER
N

, CG %"

© VR =

13



Bremen

G. Zachmann

Computer Graphics 2

Horizontal
Sobel
Operator

1 2
00

,
0
1 -2 -1
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* Problem: we can't simply apply the convolution idea to meshes!

* Why not?

* Meshes don't have a canonical , tensor-structure-like parameterization!
* |.e., usually there is no parameterization like x and y in the plane

* Goal: filter without parameterization
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U Laplacian Smoothing

e |dea:

* Consider edges as springs

* For a vertex vp, determine its position of least energy

within its 1-ring

d
. 1 2
, Energy of vo: E = 5 ; v, — vol]

* Necessary condition for minimum: derivative equals zero

d
: 1
Iterative procedure: v, = - Zvi

=1

G. Zachmann Computer Graphics 2
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* Generalization: introduce "influence" of adjacent vertices and "speed"
k

AVOZZW,'(V,'—V()), with ZW;:].,W,'ZO

=1

Vo = Vo + AAvg

e Simplest form of the weights:
d

1
Avg = 7 Z(v,- — V)

=1

where d = degree of vo = number of neighbors

1
lvi—vol|

. Better weights are w; = or w; = e IVi-wl® ("better" by experiment)

(see chapter "Object Representations" for more)
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Y Comparison with Other Smoothing Operators (not presented here) '-Sfé

10% noise

" ] Original Laplacian

Mean

Bilaplacian Curvature Coons
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Y Problem: Laplace-Smoothing Causes Shrinking §§

Original | Afte.r 4 After 80
Iterations
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U A Simple Extension to Prevent Shrinking

* Like before, for every v; compute di v,

1
AV,‘ — E (Vj — V,')

JEN (i)

* Average all neighboring A4's (including the own A):

* Push the new vertex towards the 1-ring equilibrium and outwards away
from the local direction of contraction (d;):

V., = V; + )\(ozAv,- — (1 — a)d;)
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Y Comparison

Laplacian
smoothing

Smoothing
with pushback
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Y Global Laplacian Smoothing

e Given:meshM=(V, E, F), V={vy, ..., vn}, vi= (X, Vi, Z})
e Sought: mesh M' with vertices v;' such that

e M'is smoother than M, and

* M'" approximates M

e It M' was pertectly smooth (i.e., a plane), we could find weights s.t.

Vi: Z W,'j(VJ/- — V:) =0

JEN ) (1)

* This can be written as 3 systems of linear equations, one for x coords, one
for y coords, one for z

* In the following, we will deal with the x coords —y and z work similarly
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X1
X;
 Consider the x coords; write(1)as L] “ | =0
,
-1 ,i=
where Lis a nxn matrix, with L, = cw;; ,(i,j) € E
0 else

* Detinition: L is called the Laplacian of the mesh
* In a sense, L encodes the adjacency of the mesh

* Analogously, construct a system of equations of y and z
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« Example: for sake of simplicity, use wj; = dl,-

/-1 1/3 0 1/3 1/3 o\
14 -1 1/4 14 o 1/4

o 12 -1 0 0o 12

1/4 1/4 0 -1 1/4 1/4
/3 0 0 1/3 -1 1/3
\ 0 1/4 1/4 1/4 1/4 -1 /

* Warning: L has rank n-1, n = # vertices

* "Proof" by example: vector x = (1, ..., )T is a solutiontoLx = 0
(and forall a, L(ax) = 0, too)

* Check for yourself: ist that so?
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e Solution: "anchor" one vertex, i.e., fix its position

» Forinstance, in our example, add condition vi = vy :

\

0

1/3 0 1/3
/4 -1 1/4 1/4
12 -1 0

1/4 1/4 O -1

1/3 0 0 1/3

0

1

1/4 1/4 1/4
0O 0 O

1/3
0
0

1/4
-1

1/4
0

0
1/4
1/2
1/4
1/3
-1
0

\

(%)

/
X5

/

o

0

o/

* This system now has a unique solution

G. Zachmann
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* Avoiding shrinking: introduce another constraint requiring the barycenters of
the new triangles be the same as the barycenters of the old ones

1 1
V(i,j, k) € F: §(vj-+vj’-+v’k) = §(V,'—|—Vj—|—vk) (2)
X]
 Write (1) and (2) as (;) X_2 — (8) (3)
X,

where B is a mxn matrix, m = number of triangles, and b is a column vector

with m entries, where the k-th row corresponds to triangle F, = (s, i, i3) and

By = %, fori=iy, iz, i3, Oelsewhere, and by = 3(xi1 + xi2 + xi3)
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* Solve (over-determined) system (3), which has the form Ax = ¢
in the least squares sense:

x=(ATA)'A'c

* In real lite, use a sparse solver, e.g., TAUCS or OpenNL

e Results:

Original Smoothed

G. Zachmann Computer Graphics 2 SS  June 2024
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* Further requirement: certain points
("features") should be maintained

.
LN

e Solution: introduce more constraints

o Pick feature pointsv;,...,V;

* Either by user, or by automatic salient point detectors

. I\, L
o Add constraintv;, =v; , l=1,... k (4) |_ /X{\ O
e Add equations (4) to system (3): B X_2 =1|b
C ; C
where C is a matrix containing \x/
in every row I just one 1 at position i;, 1<l<k, andc = (x;, ..., X; )

* Again, we do this for x-, y-, and z-coordinates separately
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Y Results

Noisy original Smoothed

Noisy original Laplacian smoothing Bilateral smoothing Global smoothing
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U Mesh Simplification g

e Simplification: Generate a coarse mesh from a fine (hi-res) mesh
e While maintaining certain criteria (will not be discussed further here)
* Elementary operations:

* Edge collapse:

: , (More details in the course
 All edges adjacent to the edge are required "Virtual Reality .." )

* Vertex removal:

 All edges incident to the vertex are needed
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@ Subdivision Surfaces: One of the First Movies

[Pixar: "Geri's Game"]
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Y Examples from Animation Films

Input base mesh Subdivision patch structure Final model

" pnr e S WA E i ..""\
= Immmay
1‘ ’J ‘*‘—"_ X

¥

. qQEEw i aEs|
ot el

[NieRner et al., 2012]
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Y Example from Games

* Used to create high-poly models that are then used to bake texture maps
(normal map, specular map, etc.) for the low-poly in-game models
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Basic Idea of Subdivision

e Start with a (simple) mesh MO, called control mesh

* |n each iteration i:

1. Refinement: subdivide edges and faces of M’
* Some schemes split vertices ("dual" subdivision schemes)
2. Weighted averaging: calculate new positions by averaging neighboring vertices

* Results in a new mesh M*! (generation i+1)

* |deally, the mesh converges to a limit surface
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Y The Catmull-Clark Subdivision Scheme 8

Pi

* Let p; = vertices of the "old" mesh generation

* For each face, calculate a new "

1 K
f:;;l)i

* For each edge, calculate a new

".

1

e = —
4

(pr+po+ L + 6)

* For each old vertex, p, calculate a
new"vertex point”:

p:

G. Zachmann

1 2

q-+ —r
m m

Computer Graphics 2

SS June 2024

"

k = # old vertices incident to the face (valence)

p1, p2 = old vertices incident to the edge
f, f, = new face point of the faces
incident to the edge

m = # faces/edges incident to old vertex (valence)
q = average of incident face points
r = average of incident edge points

1 1 «—
q:EZf: ”:E;Gi
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U Catmull-Clark in Action
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U Advantages

* Modelers and animators (artists) like object
descriptions that are ...

e Easy to understand and control

* Smooth, but creases can be added easily when
needed

o Offer different levels of detail, and LoD's can be
made adaptive, e.qg., view-dependent

* Well-suited for animation, i.e., easy to deform
 Allow for arbitrary topology (with holes and borders)

 Compact (in terms of memory usage)
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Y Subdivision Schemes (”Subdivision Zoo”)

Common schemes:

e Catmul Clark

* Doo-Sabin

* Loop

 Butterfly — Nira Dyn

° ...Many more

G. Zachmann Computer Graphics 2

SS  June

Classification by:

2024

Mesh type: tris, quads, hex...,
combination

Face / vertex split (a.k.a. "primal" /
"dual" scheme)

Interpolating / Approximating
Smoothness

Linear/non-linear
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Y  catmull-Clark vs Doo-Sabin

Doo-Sabin
Catmull-Clark
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